Indice

Indice v
Premessa degli autori XV
Prefazione XVII
A cura di V. Parenti Castelli XVII
A cura di A. Cappozzo XIX
1 Introduzione 3
1.1 La meccanica 3
1.2 La biomeccanica 4
1.3 Organizzazione del testo 6
1.4 Cenni storici 7
1.5 Terminologia essenziale 10
1.6 Modelli di sistemi meccanici e biomeccanici 15
1.6.1 Confronto tra modelli 16
1.6.2 Modelli a catene cinematiche 17
1.6.3 Modelli agli elementi finiti 20
1.6.4 Modelli fisici 21
2 Il sistema muscolo-scheletrico 23
2.1 Il muscolo 23
2.2 Cenni di anatomia funzionale del muscolo scheletrico 26
2.2.1 La struttura del muscolo 26
2.2.2 La relazione forza-lunghezza del sarcomero 29
2.3 Il comando della contrazione, le unità motorie, il twitch 30
2.3.1 Generalità, unità motorie, fibre lente e veloci, meccanismo di contrazione 30
2.3.2 La scossa singola (twitch) e il reclutamento muscolare 31
2.4 Proprietà meccaniche del muscolo, modello di Hill 33
2.4.1 Considerazioni di base 33
2.4.2 La relazione forza-lunghezza 34
2.4.3 La relazione forza-velocità 35
2.4.4 Potenza meccanica sviluppabile 38
2.4.5 Stimolazione e attivazione 38
2.4.6 Modello di Hill a 3 elementi 39
2.5 Procedure di verifica sperimentali 40
2.6 Consumo e rendimento energetico dei muscoli 43
2.7 Il consumo di ossigeno, la frequenza cardiaca e la misura del costo energetico 47
2.8 Produzione di energia, consumo energetico, affaticamento 50
2.9 Cenni sul sistema nervoso 52
2.10 I neuroni 53
2.11 Il sistema nervoso centrale SNC 55
2.11.1 L'encefalo 55
2.11.2 Il midollo spinale 56
2.12 Recettori 58
2.13 Il sistema motorio 58
2.14 Il sistema scheletrico 61
2.15 La struttura delle ossa 64
2.15.1 La forma 64
2.15.2 La struttura interna 65
2.15.3 Un tessuto vivo 65
2.16 Tendini e legamenti 67
2.17 Cartilagine 70
2.18 Le articolazioni 71
2.18.1 Classificazione delle articolazioni 71
2.18.2 Classificazione delle diartrosi 74
2.19 L'arto superiore 77
2.19.1 Struttura generale 77
2.19.2 La spalla 78
2.19.3 L'articolazione del gomito 80
2.19.4 L'articolazione del polso 81
2.19.5 La mano 82
2.20 L'arto inferiore 82
2.20.1 Struttura generale 82
2.20.2 L'anca 86
2.20.3 Il ginocchio 86
2.20.4 La caviglia 87
2.21 Il cranio 87
2.22 Il rachide 88
2.22.1 Introduzione 88
2.22.2 Le vertebre 89
2.22.3 I dischi intervertebrali 90
2.22.4 I muscoli del rachide 92
3 Cinematica 93
3.1 Posizione, velocità e accelerazione di un punto 93
3.1.1 Moto rettilineo 97
3.1.2 Moto balistico 99
3.1.3 Moto circolare 100
3.2 Moto di un corpo rigido 103
3.2.1 Teoremi di Galileo e di Rivals 103
3.2.2 Centro di istantanea rotazione 107
3.3 Moto dei sistemi di corpi 111
3.3.1 Gradi di libertà e vincoli 112
3.3.2 Coppie cinematiche 113
3.3.3 Analisi di mobilità dei sistemi di corpi 118
3.3.4 Moto relativo tra corpi 122
3.4 Analisi cinematica 125
3.4.1 Analisi di posizione 126
3.4.2 Analisi di velocità e accelerazione 126
3.5 Moto nello spazio tridimensionale 138
3.5.1 Posizione e orientamento relativi tra corpi 138
3.5.2 Rappresentazioni dell'orientamento 142
3.6 Analisi matriciale di velocità e accelerazione 151
3.6.1 Concetti generali 151
3.6.2 Composizione dei moti 154
3.7 Esercizi 155
4 Statica 159
4.1 Forze e momenti 159
4.1.1 Definizioni e proprietà delle forze e dei momenti 159
4.1.2 Tipologie di forze 165
4.2 Forza di gravità e baricentro 169
4.3 Forza elastica 173
4.4 Forze di attrito e dissipative 175
4.4.1 Attrito radente statico e dinamico 176
4.4.2 Attrito volvente 181
4.4.3 Attrito viscoso 184
4.5 Azioni aerodinamiche 185
4.6 Reazioni vincolari 190
4.7 Equilibrio dei corpi 193
4.7.1 Equazioni cardinali della statica 193
4.7.2 Diagrammi di corpo libero 194
4.7.3 Analisi statica dei sistemi in presenza di attrito 201
4.8 Principi di statica applicati al corpo umano: le leve 205
4.9 Analisi matriciale della statica 207
4.10 Esercizi 208
5 Modelli per la cinematica e la statica del corpo umano 213
5.1 Considerazioni di base 213
5.2 Primo modello elementare dell'arto inferiore 214
5.3 Secondo modello dell'arto inferiore con segmenti rigidi pesanti 221
5.4 Limiti dei modelli considerati 223
5.5 Modello dell'arto inferiore tridimensionale semplificato 225
5.5.1 Descrizione anatomica 226
5.5.2 Analisi cinematica 228
5.5.3 Analisi degli sforzi 232
5.5.4 Confronto tra modelli 239
5.6 Modellazione delle azioni muscolari 240
5.7 Forze articolari 240
5.8 La cooperazione di vari muscoli 243
5.8.1 Sistema staticamente indeterminato 243
5.8.2 Formulazione matematica del problema 244
5.8.3 Interpretazione grafica 247
5.9 Confronto tra i diversi modelli dell'arto superiore 249
5.10 Cooperazione tra muscoli: alcune riflessioni 250
5.11 Modellizzazione elementare del rachide 251
6 Dinamica 255
6.1 Proprietà inerziali dei corpi 255
6.1.1 Momento di inerzia 255
6.1.2 Momento di inerzia per assi paralleli 259
6.1.3 Matrice di inerzia 261
6.2 Equazioni cardinali della dinamica 264
6.2.1 Dinamica del punto materiale 265
6.2.2 Dinamica del corpo rigido 266
6.2.3 Dinamica del corpo rigido in moto piano 272
6.3 Metodi energetici 278
6.3.1 Energia cinetica di un corpo rigido 278
6.3.2 Lavoro e potenza 280
6.3.3 Lavoro delle forze conservative 283
6.3.4 Teorema dell'energia cinetica 284
6.3.5 Flusso di potenza e bilancio energetico 288
6.3.6 Rendimento 291
6.4 Dinamica dei sistemi multibody 294
6.4.1 Formulazione di Newton-Eulero e principio di d'Alembert 294
6.4.2 Formulazione di Lagrange 298
6.5 Analisi matriciale della dinamica 301
6.6 Esercizi 303
7 Meccanica degli urti 307
7.1 Impulso e quantità di moto 307
7.2 Urti 310
7.2.1 Urto centrale diretto 311
7.2.2 Urto centrale obliquo 315
7.2.3 Urto eccentrico 318
7.3 Gli urti nella biomeccanica 321
7.3.1 La corsa 321
7.3.2 Il tennis 323
7.4 Esercizi 327
8 Meccanica delle vibrazioni 329
8.1 Vibrazioni e modelli di sistemi vibranti 329
8.2 Effetti delle vibrazioni sull'uomo 332
8.3 Modello a un grado di libertà 333
8.4 Risposta libera 335
8.4.1 Smorzamento subcritico $(\zeta<1)$ 336
8.4.2 Smorzamento critico $(\zeta=1)$ 339
8.4.3 Smorzamento supercritico $(\zeta>1)$ 339
8.5 Risposta forzata 343
8.5.1 Risposta a una forzante armonica 344
8.5.2 Trasmissibilità e isolamento dalle vibrazioni 348
8.5.3 Vibrazioni causate dal moto del basamento 352
8.6 Cenni sui sistemi vibranti a più gradi di libertà 357
8.7 Considerazioni conclusive 359
8.8 Esercizi 361
9 Introduzione alla meccanica dei corpi deformabili 363
9.1 Introduzione 363
9.2 Azioni interne 363
9.3 Proprietà geometriche delle sezioni 371
9.3.1 Baricentro 371
9.3.2 Momenti di inerzia 372
9.4 Tensione e deformazione 373
9.4.1 Tensione 373
9.4.2 Deformazione 376
9.4.3 Legame costitutivo elastico: legge di Hooke 377
9.5 Tensioni principali 381
9.6 Trazione 383
9.7 Flessione 384
9.8 Taglio 390
9.9 Torsione 391
9.10 Contatti superficiali e usura 395
9.10.1 Contatti puntiformi 396
9.10.2 Contatti lineari 398
9.10.3 Usura 399
9.10.4 Cenni sulla lubrificazione 401
9.11 Esercizi 403
10 Proprietà meccaniche dei materiali e dei tessuti 405
10.1 Elasticità e plasticità 405
10.2 Viscoelasticità 408
10.2.1 Modelli elementari: molle e smorzatori 409
10.2.2 Modello di Kelvin-Voight 411
10.2.3 Modello di Maxwell 412
10.2.4 Modello a tre elementi: solido lineare standard (SLS) 412
10.2.5 Isteresi 413
10.3 Proprietà meccaniche dei tessuti biologici 415
10.3.1 Il tessuto osseo 415
10.3.2 I tendini e i legamenti 418
10.3.3 La cartilagine ialina 419
11 Antropometria 421
11.1 L'antropometria 421
11.2 L'evoluzione dell'antropometria 423
11.3 Classificazione delle diverse corporature 425
11.3.1 Indice di massa corporea 426
11.3.2 Problemi statistici 426
11.3.3 Differenze tra i sessi e con l'età 428
11.3.4 Normalizzazione dei valori 429
11.4 Dimensioni e proprietà di massa del corpo e dei segmenti corporei 430
11.4.1 Introduzione 430
11.4.2 Densità corporea 431
11.4.3 Dimensioni, masse, inerzie e volumi 432
11.4.4 Proprietà di massa dell'intero corpo umano 436
11.5 Procedimenti sperimentali elementari di stima dei parametri 436
11.5.1 Baricentri 436
11.5.2 Momenti d'inerzia 437
11.6 Determinazione delle proprietà di massa, densità e inerzia per scansione 438
12 La misura e l'analisi del movimento 443
12.1 Cenni storici 443
12.2 I laboratori di analisi del movimento 444
12.3 Strumenti e metodi di analisi 446
12.4 Elettrogoniometri ed esoscheletri 447
12.4.1 Introduzione alla misura delle rotazioni 447
12.4.2 Elettrogoniometri monoassiali 447
12.4.3 Rotazioni pluriassiali 448
12.4.4 Elettrogoniometri flessibili 450
12.4.5 Esoscheletri 452
12.5 La misura del movimento tramite telecamere 453
12.5.1 Introduzione 453
12.5.2 Principi di fotogrammetria 455
12.5.3 I marker 457
12.5.4 Modello e calibrazione di una telecamera 461
12.5.5 Ricostruzione 2D e 3D delle coordinate reali di un punto 465
12.5.6 Geometria epipolare 467
12.5.7 Sincronizzazione di più telecamere 468
12.5.8 Precisione di misura, accuratezza e risoluzione 469
12.5.9 Miglioramento della misura tramite modelli multicorpo adat- tabili 470
12.5.10 Analisi di immagini senza marker 471
12.6 Altri dispositivi di misura del movimento 472
12.7 La misura delle forze 473
12.7.1 Piattaforme di forza 473
12.7.2 La misura della pressione del piede 474
12.8 Analisi del movimento 474
12.8.1 Introduzione 474
12.8.2 Campionamento di segnali 475
12.8.3 Derivazione numerica, filtraggio e smoothing 478
12.8.4 Analisi cinematica 482
12.8.5 Analisi dinamica 2D 485
12.9 Misura dell'attività muscolare, l'elettromiografia EMG 486
12.9.1 Generalità 486
12.9.2 Gli elettrodi 487
12.9.3 Misura del segnale e stima della forza 488
12.9.4 Riduzione dei disturbi e artefatti 490
12.9.5 Note 490
12.10Misura del consumo energetico 491
13 Analisi e simulazione di attività comuni e sportive 493
13.1 Il cammino 493
13.1.1 Il ciclo del passo 494
13.1.2 Le fasi del ciclo del passo 498
13.1.3 Analisi semplificata dei movimenti articolari 499
13.1.4 La forza scambiata con il terreno 501
13.1.5 Le coppie nelle articolazioni 503
13.1.6 Attività dei muscoli dell'arto inferiore nel cammino 504
13.1.7 Armonizzazione del movimento, i sei determinanti del cam- mino 505
13.1.8 Modello dinamico a corpi rigidi del cammino 507
13.1.9 Consumo e costo energetico 509
13.2 Il salto in lungo 510
13.2.1 Il salto nell'antica Grecia 511
13.2.2 Il ruolo del movimento delle braccia 513
13.2.3 Il salto in lungo moderno 518
13.2.4 La fase aerea (veleggiamento) 519
13.2.5 La battuta 527
13.2.6 La rincorsa 536
13.3 Analisi biomeccanica della pedalata 537
13.3.1 Forze e potenze nel ciclismo 539
13.3.2 Dispositivi di misura 540
13.3.3 Modello dell'arto inferiore 542
13.3.4 Limiti del modello 544
13.3.5 Modello cinematico per lo studio della pedalata 545
13.3.6 Considerazioni funzionali 546
13.3.7 Modello dinamico per lo studio della pedalata 547
13.3.8 Dinamica 547
13.3.9 Descrizione di alcune prove sperimentali tipiche 549
13.3.10 Analisi dei dati 549
13.3.11 Componenti della forza sui pedali 553
13.3.12 Forze nei piani NT (normale tangenziale) e NL (normale laterale) 558
13.3.13 Angolo del tubo sella (STA) 559
13.3.14 Movimenti e muscolatura degli arti inferiori 560
13.3.15 Attivazione muscolare 562
13.3.16 Funzioni biomeccaniche dell'arto durante la pedalata 564
13.3.17 Hand-Bike 565
13.3.18 Cyclette Ellittica 565
13.4 Analisi biomeccanica del servizio nel tennis 568
13.4.1 Introduzione 568
13.4.2 Metodo di analisi del movimento 569
13.4.3 Risultati e discussione 571
13.4.4 Influenza delle rotazioni articolari sulla velocità della rac- chetta 571
13.4.5 Effetto sulle forze articolari della variazione di stile 574
13.4.6 Urto pallina-racchetta 578
14 Endoprotesi articolari e protesi d'arto 579
14.1 Le endoprotesi articolari 579
14.2 Endoprotesi dell'anca 580
14.2.1 Condizioni e carichi di lavoro in attività routinarie 580
14.2.2 Struttura e criteri di progetto della protesi 583
14.2.3 Protesi non cementate 585
14.2.4 Protesi cementate 588
14.2.5 Interfaccia protesi-osso 588
14.2.6 Giunto articolare 589
14.3 Endoprotesi del ginocchio 591
14.3.1 Tipologie di protesi 592
14.3.2 Conformità della protesi 595
14.4 Altre tipologie di endoprotesi 595
14.4.1 Protesi del gomito 595
14.4.2 Protesi del polso e della caviglia 596
14.4.3 Fissatori vertebrali 596
14.4.4 Placche e chiodi 597
14.4.5 Fissatori esterni 600
14.5 Le protesi d'arto esterne 600
14.6 Le protesi d'arto superiore 602
14.6.1 Introduzione 602
14.6.2 Le protesi passive 604
14.6.3 Le protesi attive 605
14.6.4 Le protesi ibride 609
14.6.5 Lo stato dell'arte 610
14.7 Le protesi d'arto inferiore 611
14.7.1 Protesi di ginocchio mono e policentrico 612
14.7.2 Lo stato dell'arte 622
14.7.3 Piedi artificiali 625
Bibliografia 627
Indice analitico 635

