Capitolo 1

Elementi di teoria degli insiemi

Soluzioni Esercizi

Esercizi Capitolo 1

Esercizio 1.6.1 Siano $A \in B$ i seguenti insiemi:

$$A = \{x \in \mathbb{Z} | x^2 \le 12\}; \quad B = \{x \in \mathbb{N} | x + 1 \text{ sia primo}\}.$$

Determinare $A \cap B$ e A - B.

Soluzione Esercizio:

L'insieme A è così costituito:

$$A = \{-3, -2, -1, 0, 1, 2, 3\};$$

mentre l'insieme B è infinito: $B = \{1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, \ldots\}$. Si ha quindi:

$$A \cap B = \{1, 2\}, \qquad A - B = \{-3, -2, -1, 0, 3\}.$$

Esercizio 1.6.2 Considerare i seguenti insiemi:

$$A = \{2, 5, 7, 8, 12\};$$
 $B = \{1, 2, 3, 5\};$ $C = \{7, 8\}.$

Determinare $A \cap B$, $B \cup C$, A - B, A - C, C - B.

Soluzione Esercizio:

Avremo:

$$A \cap B = \{2.5\};$$

 $B \cup C = \{1, 2, 3, 5, 7, 8\};$

$$A - B = \{7, 8, 12\};$$

$$A - C = \{2, 5, 12\};$$

$$C - B = \{7, 8\} = C.$$

Esercizio 1.6.3 Considerare i seguenti insiemi:

$$A = \{2, 5, 7, 8\};$$
 $B = \{2, 5, \{7, 8\}\};$ $C = \{7, 8\};$ $D = \{5\}.$

Determinare quali delle seguenti relazioni siano vere e quali false:

$$A \subset B$$
; $C \subset A$; $C \subset B$; $C \in A$; $C \in B$; $D \in A$; $D \subset B$; $S \in D$.

Soluzione Esercizio: $A \subset B$ Falso; $C \subset A$ Vero; $C \subset B$ Falso; $C \in A$ Falso; $C \in B$ Vero; $D \in A$ Falso; $D \subset B$ Vero; $D \in A$ Falso; $D \subset B$ Vero; $D \in A$ Falso; $D \subset B$ Vero; $D \in A$ Vero.

Esercizio 1.6.4 Considerare i seguenti insiemi:

 $V = \{ \text{ Tutti i veicoli } \}; \quad A = \{ x \in V \mid x \text{ ha propulsione elettrica} \};$ $B = \{ x \in V \mid x \text{ sia un'auto } \} \quad C = \{ x \in V \mid x \text{ ha un motore a benzina } \}.$

- 1) Determinare $A \cap B$, A B, $A \cap C$, $B (C \cup A)$
- 2) Sia p un autobus urbano a metano e q un locomotore di un treno "Freccia Rossa" di Trenitalia. È vero che $q \in A \cup B \cup C$? E $p \in A \cup B$?

Soluzione Esercizio:

Parte 1)

 $A \cap B = \{ \text{ Auto a propulsione elettrica } \};$

 $A - B = \{ \text{ Veicoli a propulsione elettrica che non sono auto } \};$

 $A \cap C = \{ \text{ Veicoli ibridi con un motore elettrico e uno a benzina } \};$

 $B-(C\cup A)=\{$ Auto a propulsione non elettrica e non a benzina $\}$ (ad esempio diesel).

Parte 2)

 $q \in A \cup B \cup C$, Vero;

 $p \in A \cup B$, Falso.

Esercizio 1.6.5 Considerare i seguenti insiemi:

$$A = \{1, 2, 5\}; \quad B = \{+, *\}.$$

Determinare $A \times B$, $B \times A$, $B^2 = B \times B$.

Soluzione Esercizio:

$$A \times B = \{(1,+), (2,+), (5,+), (1,*), (2,*), (5,*)\};$$

$$B \times A = \{(+,1), (+,2), (+,5), (*,1), (*,2), (*,5)\};$$

$$B^2 = B \times B = \{(+,+), (+,*)(*,+), (*,*)\}.$$

Esercizio 1.6.6 La soluzione di questo esercizio è presente sul testo cartaceo.

Esercizi 1.6.7 e 1.6.8 Dire se le seguenti leggi rappresentano funzioni se considerate $\mathbb{N} \to \mathbb{N}$, $\mathbb{N} \to \mathbb{Z}$ e $\mathbb{N} \to \mathbb{Q}$. Se sono funzioni, dire se siano iniettive, suriettive.

$$f(n) = 3n + 2;$$
 $f(n) = 2n - 1;$ $f(n) = \frac{2n + 1}{3};$ $f(n) = \frac{n(n + 1)}{2}.$

Per le f che siano funzioni dire se sono iniettive e/o suriettive.

Soluzione Esercizi:

f(n) = 3n + 2 è una funzione $\mathbb{N} \to \mathbb{N}$, in quanto $\forall n \in \mathbb{N}, 3n + 2$ esiste in \mathbb{N} ed è unico (quindi è anche una funzione $\mathbb{N} \to \mathbb{Z}$ e $\mathbb{N} \to \mathbb{Q}$).

La funzione è sempre iniettiva (se $n \neq m$, anche $3n + 2 \neq 3m + 2$). Non è suriettiva in quanto non ogni numero naturale è della forma 3n+2 (quindi non è suriettiva neanche come funzione $\mathbb{N} \to \mathbb{Z}$ e $\mathbb{N} \to \mathbb{Q}$).

f(n)=2n-1 non è una funzione $\mathbb{N}\to\mathbb{N}$, in quanto f(0) non è definito in \mathbb{N} (varrebbe -1). La f risulta invece una funzione $\mathbb{N}\to\mathbb{Z}$ e $\mathbb{N}\to\mathbb{Q}$. La funzione è iniettiva, ma non suriettiva né vista $\mathbb{N}\to\mathbb{Z}$ né $\mathbb{N}\to\mathbb{Q}$ (le immagini sono solo numeri interi dispari).

 $f(n) = \frac{2n+1}{3}$ non è una funzione $\mathbb{N} \to \mathbb{N}$, né $\mathbb{N} \to \mathbb{Z}$, in quanto ad esempio f(0) o f(2) non son definiti in \mathbb{N} né in \mathbb{Z} . La f è invece una funzione $\mathbb{N} \to \mathbb{Q}$), ove risulta iniettiva ma non suriettiva (le immagini hanno solo denominatore 3).

 $f(n) = \frac{n(n+1)}{2}$ è una funzione $\mathbb{N} \to \mathbb{N}$, in quanto $\forall n \in \mathbb{N}$, $\frac{n(n+1)}{2}$ esiste in \mathbb{N} ed è unico, infatti se n è pari, allora n+1 è dispari, e viceversa; quindi il prodotto n(n+1) è sempre pari e divisibile per 2. Naturalmente allora f è una funzione anche $\mathbb{N} \to \mathbb{Z}$ e $\mathbb{N} \to \mathbb{Q}$. La funzione è sempre iniettiva, ma mai suriettiva, ad esempio non esiste $n \in \mathbb{N}$ tale che f(n) = 4.

Esercizio 1.6.9 Considerare la funzione f(x) = 3x - 1, $f : \mathbb{R} \to \mathbb{R}$; dimostrare che è biunivoca e determinare la funzione f^{-1} .

Soluzione Esercizio: La funzione f(x) = 3x - 1 è iniettiva in quanto $\forall x_1, x_2 \in \mathbb{R}$, si ha che $f(x_1) = 3x_1 + 2 = f(x_2) = 3x_2 + 2$ se e solo se $x_1 = x_2$. La funzione f(x) = 3x - 1 è anche suriettiva, in quanto $\forall y \in \mathbb{R}$, si ha f(x) = y se e solo se y = 3x - 1, cioè $x = \frac{y+1}{3}$; quindi $\forall y \in \mathbb{R}$, esiste $x \in \mathbb{R}$ tale che f(x) = y.

Allora la f, essendo iniettiva e suriettiva, è biunivoca.

La funzione f^{-1} risulta essere, da quanto sopra visto, $f^{-1}(y) = \frac{y+1}{3}$; infatti $f^{-1}(f(x)) = x$ e $f(f^{-1}(y)) = y$.

Esercizio 1.6.10 Considerare l'operazione di sottrazione su \mathbb{Z} e dire quali delle proprietà nella definizione di gruppo commutativo sono soddisfatte dalla struttura $(\mathbb{Z}, -)$.

Soluzione Esercizio:

• Proprietà associativa: Non vale, infatti: x - (y - z) = x - y + z, mentre (x - y) - z = z - y - z.

- Esistenza dell'elemento neutro: Non vale, infatti seppure sia vero che $\forall z \in \mathbb{Z}$ si ha: z 0 = z, non si ha: 0 z = z; perché 0 sia elemento neutro dovrebbero valere entrambe.
- Esistenza dell'inverso. Non esistendo l'elemento neutro, non ha senso porsi il problema dell'esistenza dell'inverso degli elementi, che è legata ad esso.
- Proprietà commutativa: Non vale: in generale, $z x \neq x z$.

Esercizio 1.6.11 La soluzione di questo esercizio è presente sul testo cartaceo.

Esercizio 1.6.12 Dimostrare, usando il principio di induzione, che per ogni $n \in \mathbb{N}$, la somma dei numeri dispari da 1 a 2n+3 è pari a $(n+2)^2$; cioè dimostrare che $\forall n \in \mathbb{N}$ vale la:

$$\mathcal{P}(n): 1+3+5+\cdots+(2n+3)=(n+2)^2.$$

Attenzione: Per un errore di stampa, nel libro l'esercizio riporta $(2n + 2)^2$ invece di $(n + 2)^2$.

Soluzione Esercizio: Usando il principio di induzione dobbiamo dimostrare che è vera $\mathcal{P}(0)$ e che se è vera $\mathcal{P}(n)$, allora lo è anche $\mathcal{P}(n+1)$.

Si ha:

$$\mathcal{P}(0): 1+3=4=2^2.$$

Che è quindi vera. Supponiamo adesso che $\mathcal{P}(n)$ valga e dimostriamo che vale $\mathcal{P}(n+1)$, cioè che:

$$\mathcal{P}(n+1): \quad 1+3+5+\cdots+(2n+3)+[2(n+1)+3]=[(n+1)+2]^2=(n+3)^2.$$

Poiché $\mathcal{P}(n)$ vale, si ha che $1+3+5+\cdots+(2n+3)=(n+2)^2$; quindi

$$1 + 3 + 5 + \dots + (2n + 3) + [2(n + 1) + 3] = (n + 2)^{2} + [2(n + 1) + 3] =$$
$$= n^{2} + 4n + 4 + 2n + 2 + 3 = 4n^{2} + 6n + 9 = (n + 3)^{2}$$

Che è esattamente quanto afferma la $\mathcal{P}(n+1)$, e la proprietà resta dimostrata in generale.

Esercizio 1.6.13 Nell'insieme $\mathbb{R}[x]$ dei polinomi a coefficienti reali in una variabile x, consideriamo le consuete operazioni di somma e prodotto di polinomi. ($\mathbb{R}[x], +$) è un gruppo commutativo? La struttura ($\mathbb{R}[x], +, \times$) è un anello?

Soluzione Esercizio:

 $(\mathbb{R}[x],+)$ è un gruppo commutativo, infatti la somma fra polinomi è commutativa e associativa; l'elemento neutro esiste in $\mathbb{R}[x]$ ed è il

polinomio nullo **0**. Infine per ogni $p(x) \in \mathbb{R}[x]$ l'inverso rispetto alla somma esiste ed è il polinomio -p(x).

 $(\mathbb{R}[x], +, \times)$ è un anello, infatti anche il prodotto di polinomi è associativo, esiste l'elemento neutro rispetto al prodotto (il polinomio costante 1) e vale la proprietà distributiva:

$$\forall p(x), q(x), r(x) \in \mathbb{R}[x], p(x)[q(x) + r(x)] = p(x)q(x) + p(x)r(x).$$

Inoltre $(\mathbb{R}[x], +, \times)$ è un anello commutativo, poiché

$$\forall p(x), q(x) \in \mathbb{R}[x], p(x)q(x) = q(x)p(x).$$

Non è invece un campo, in quanto ad esempio il polinomio x non ha un inverso rispetto al prodotto: non esiste un polinomio p(x) tale che x.p(x)=1. [Notare che la frazione $\frac{1}{x}$ non è un polinomio].

Esercizio 1.6.14 Dire se (A, *) sia una struttura algebrica nei seguenti casi:

- $A = \mathbb{Z}, \forall a, b \in \mathbb{Z}$: a * b = a + b 3:
- $A = \mathbb{Q}, \forall a, b \in \mathbb{Q}: a * b = \frac{a}{b-1}$;
- $A = \mathbb{Q}, \forall a, b \in \mathbb{Q}: a * b = -\frac{ab}{2}.$

Soluzione Esercizio:

- A = Z, ∀a, b ∈ Z: a * b = a + b-3, (A, *) è una struttura algebrica, l'operazione è sempre eseguibile (e il risultato è unico). Inoltre (A, *) è un gruppo commutativo: è facile vedere che l'operazione è associativa, commutativa e che 3 è l'elemento neutro; l'inverso di ogni a ∈ Z sarà (6 a), infatti a * (6 a) = a + 6 a 3 = 3.
- $A = \mathbb{Q}, \forall a, b \in \mathbb{Q}$: $a*b = \frac{a}{b-1}$; (A,*) non è una struttura algebrica: l'operazione non è definita per b = 1. Sarebbe un'operazione su $\mathbb{Q} \{1\}$.
- $A=\mathbb{Q}, \ \forall a,b\in\mathbb{Q}:\ a*b=-\frac{ab}{2},\ (A,*)$ è una struttura algebrica: l'operazione è sempre eseguibile. Inoltre l'operazione è commutativa, associativa, ha -2 come elemento neutro e ogni elemento ha inverso pari a $\frac{4}{a}$, tranne lo 0.